

Bee Observer

Using machine learning to detect anomalies in beehives

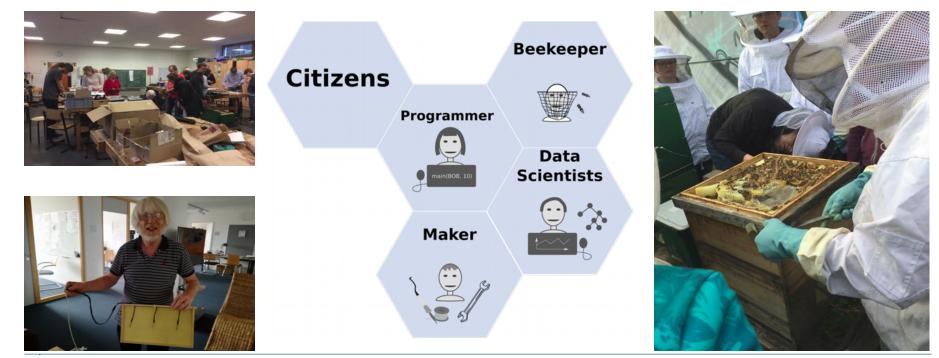
Diren Senger, Alexander Goncharskiy

Diren Senger UNIVERSITY OF BREMEN

Alexander Goncharskiy COMMERZBANK AG

"Bee Hives" by mhall209 is licensed under CC BY-NC-SA 2.0

Beeobserver – Project Structure



Bee Observer – Project Structure

RHEIN-MAIN

Bundesministerium für Bildung und Forschung

Universität Bremen

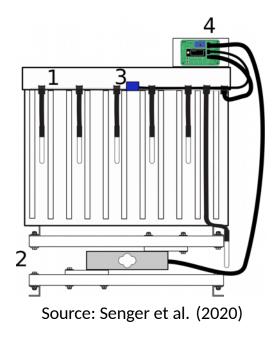
Bee Observer - Sensor Data

Data collection since February 2019

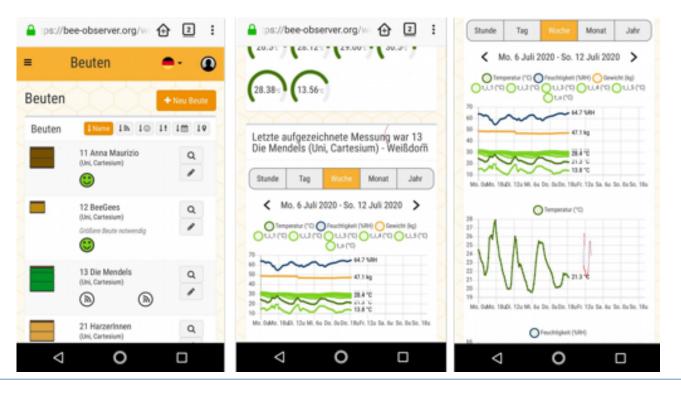
Sensor-kits:

- 1. six thermometers (5 in, 1 out)
- 2. load-cell (scale)
- 3. humidity sensor
- 4. processing unit

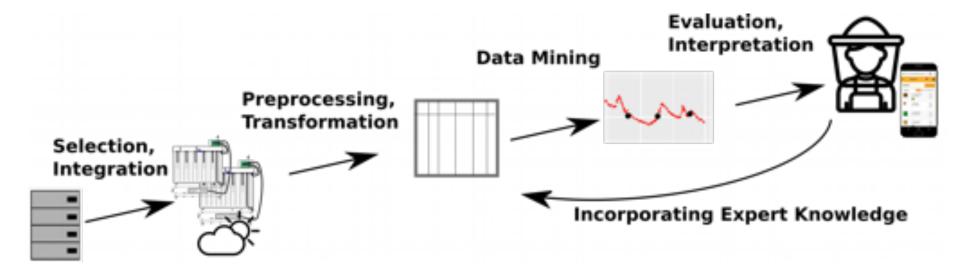
Data stored in *influxdb*



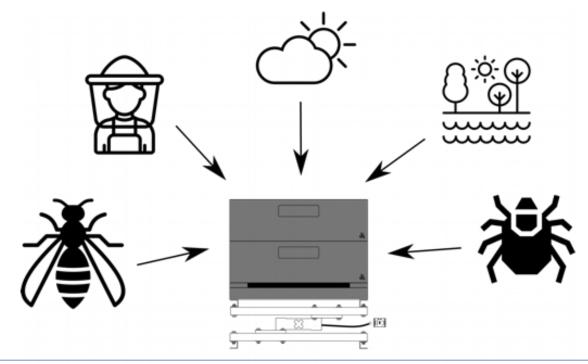
Bee Observer Application



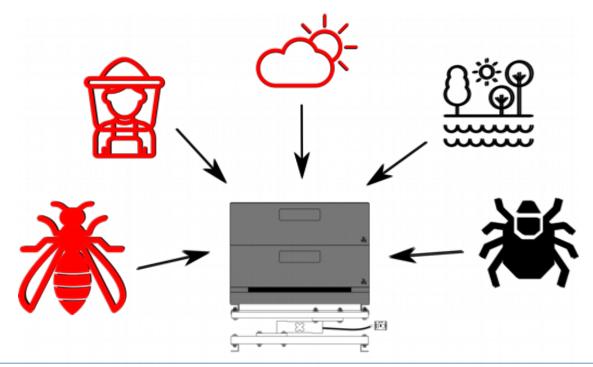
Knowledge Discovery in Datamining



Causes of changes in micro-climate



Causes of local outliers



Outlier Detection

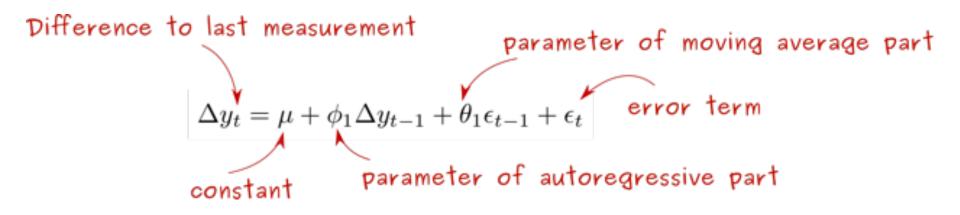
1) Modelling and predicting

2) Generalised Extreme Student Deviation (GESD) Test

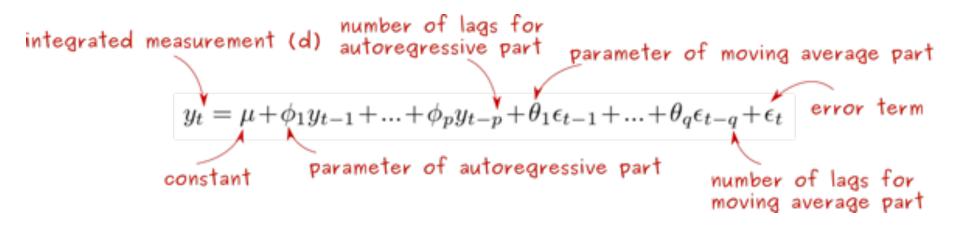
Outlier Detection - Modelling

- Auto-Regressive Integrated Moving Average (ARIMA)
 - Seasonal
 - Multivariate
 - External predictors
- Moving Median
- Seasonal Hybrid ESD

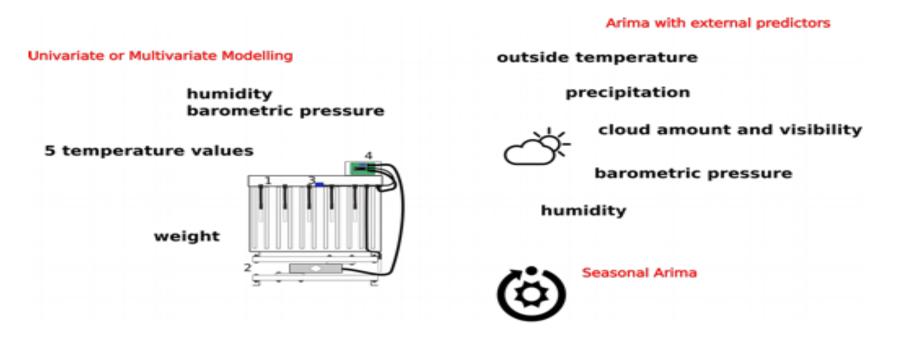
Example: ARIMA (1,1,1)

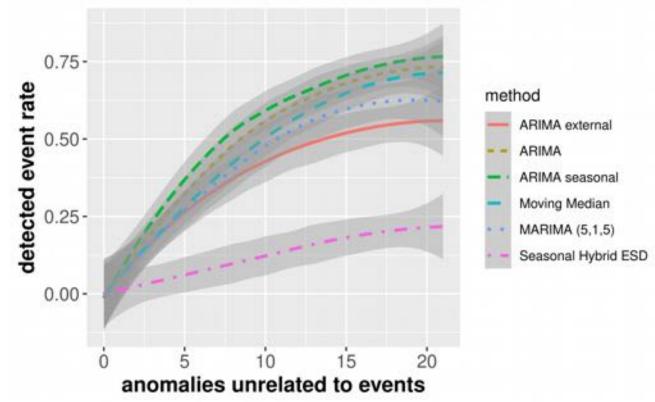


ARIMA – full definition

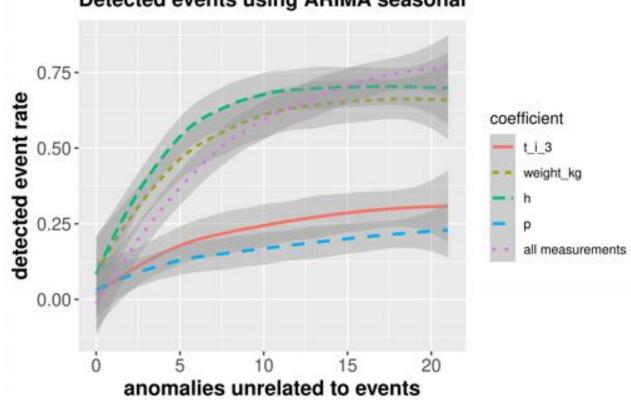


ARIMA modelling



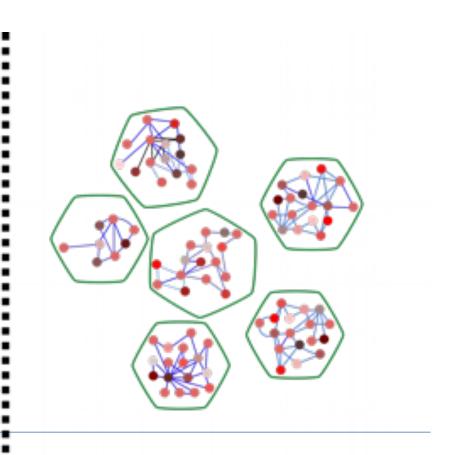


Detected events using all measurements



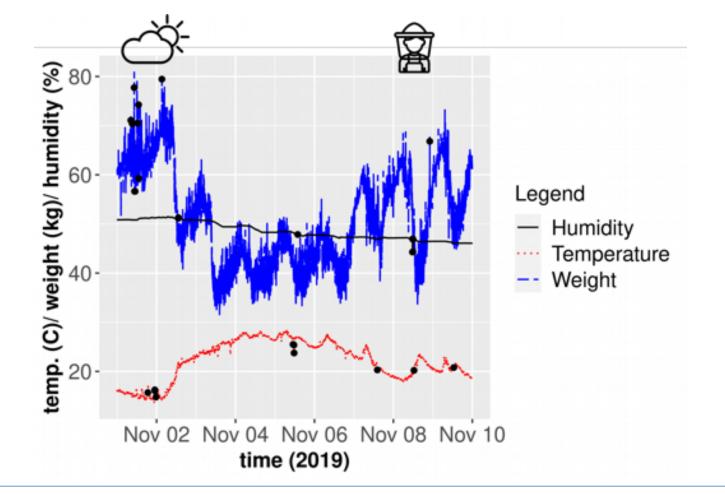
Detected events using ARIMA seasonal

Agent based model



Example: How likely is an inspection?

- **Day and night:** inspections are least likely in the middle of the night
- Interval: an interval of 7 to 10 days between inspections is most likely
- **Colony health:** it is more likely that the beekeeper will inspect a hive in poor health then a fit one



Analytical Use Case for Supervised Learning -Swarm Detection

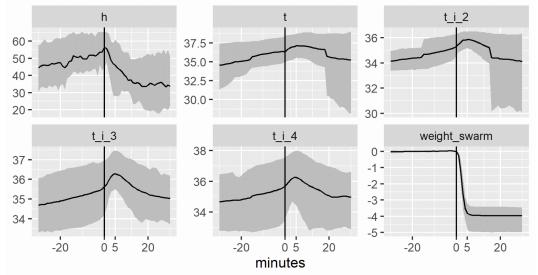
- During an swarm event half of the colony emerges from the hive with the old queen bee
- A beekeeper might loose half of their bees

©Thomas Söllner - stock.adobe.com

What happens during a swarm?

Developments during a swarm event

line: mean developments - area: range over eight hives



Notes: The vertical line denotes the start of the colony leaving the hive.

The weight variable was standardised to zero at the beginning of the event.

Outlook

- Integrate visualisation of outliers in App
- Look at other abnormal trends
- Include more information about flowering period and habitat structure

•

CORRELAID

RHEIN-MAIN

In Deutschland gibt es 33.300 Insektenarten ...

... das sind ca. 70 % aller Tierarten!

42 % der Insektenarten gelten als bestandsgefährdet, extrem selten oder bereits ausgestorben! Bei **45 %** der Insektenarten ist der **Bestand rückläufig** ...

... z. B. bei

96 % der Köcherfliegen,
62,5 % der Tagfalter,
60,2 % der Ameisen,
42,6 % der Großschmetterlinge und 41,8 % der Wildbienen.

Gesamtwerk: BMU | Ameison: dimpank/Shutterstock.com | Bienon: Aurelija Dilute/Shutterstock.com | Pflanzen/Schmetterlinge: Val_hva/Shutterstock.com Motte, Hummel, Marienkäfer: Olga Olmia/Shutterstock.com

Superorganism Honey bee colony

Environmental influences

Parasites

Living conditions

Citizen Science – Lead Your Project

Science by nonprofessionals, citizens as data collectors or thinkers

Citizen Science – Find Your Project

SimRa - Sicherheit im Radverkehr

Das Projekt Simfla sammelt Daten über Farrädfährten, um Statistiken über Beinaheunfälle und viel befahrere Streckenabschnitte aufstellen zu können. Mit diesen Daten können Gefahrenstellen erkannt und die Stuation verbessert werden. Klims, Stock, Technik

mehr ->

Deutsche Kolonialgeschichte - Wer war was?

nine mittarschen sofort losforschen

Hilf mit die deutsche Kolonialgeschichte zu erforschent Durchforste Online- und Offine-Archive nach zeitgenössischen Quellen und führe die Daten in Wikidata zusammen. So wollen wir das Bild über die damalige Zeit weiter vervollständigen. Anerginschung Seschichte, Gesehichteft

mehr ->

mehr ->

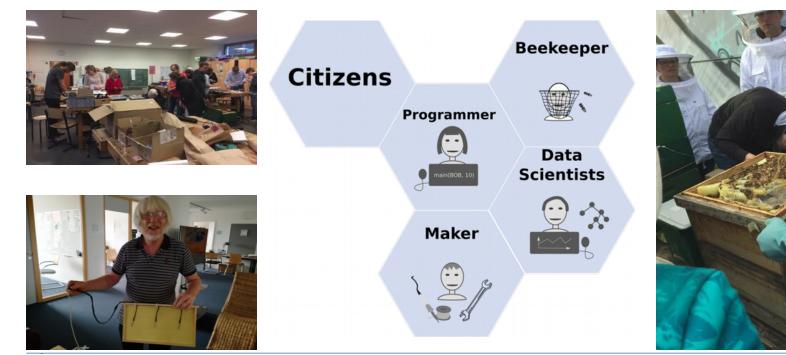
SAIN – Stäldtische Agrikultur Landwirtschaft in der Stadt neu denkent Entwickle in Bonn und Oberhausen gemeinsam mit Stadtfarmer*innen und Wosenschaftler*innen die Stadien und Bereiche der Nahrungsproduktion weiter und finde neue Ideen für Lebensmittel aus der Stadt für die Stadt Ernährung Landnutser, Pfarem

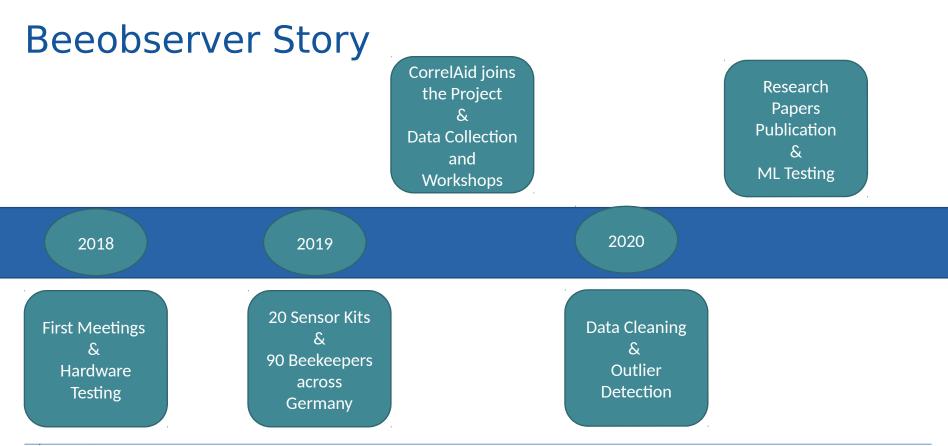
mehr ->

Citizen Science – Challenges and Chances

- Find more relevant research questions
- Make best use of available knowledge and experience
- Collect more data from different locations
- Mostly no experimental setup
- * How to pay citizens for their work?

Citizen Science – Beeobserver





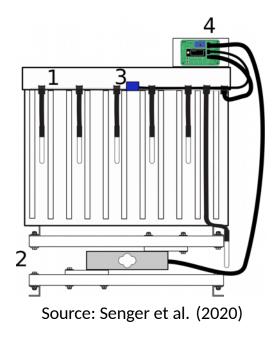
Bee Observer - Sensor Data

Data collection since February 2019

Sensor-kits:

- 1. six thermometers (5 in, 1 out)
- 2. load-cell (scale)
- 3. humidity sensor
- 4. processing unit

Data stored in *influxdb*



Bee Observer - Inspections App

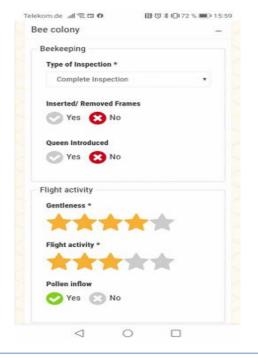
Sensor data is complemented by

Beekeeper observations

- mix of Boolean, scores, free text, categorical and numeric data
- most values voluntary

Apiary metadata

- type of hive, race of queen
- geolocation (voluntary)

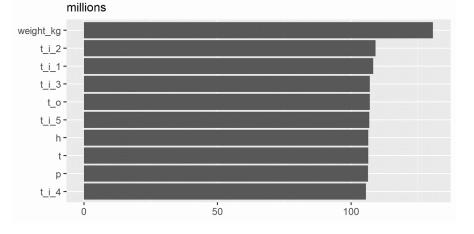


Data Profiling - Sensor Data

hundreds of millions of observations from 129 beehives

BUT

- variation across variables
- regular gaps
- some sensor kits do not have all sensors
- values outside the technical sensor range

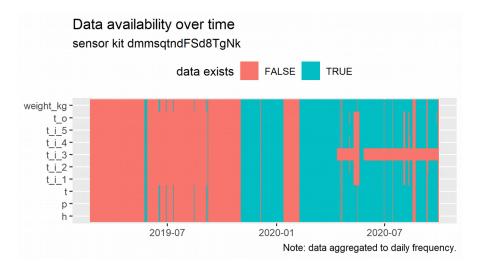


Number of non-empty observations by variable

Note: Data until 30 September 2020.

Data Profiling

- The main issues in terms of data quality are:
 - no data at all (interruption of electricity or WiFi)
 - incomplete observations (single components fail)



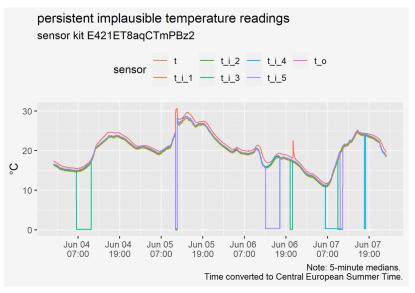
Heatmap of data availability for an example beehive

Data profiling - Data Correctness

The other problem (less frequent) is obviously incorrect data:

- values outside the technical sensor range
- values within the range, but displaying implausible fluctuation (and/or lack thereof)

Some cleaning needed!



Example for apparent issues with thermometers

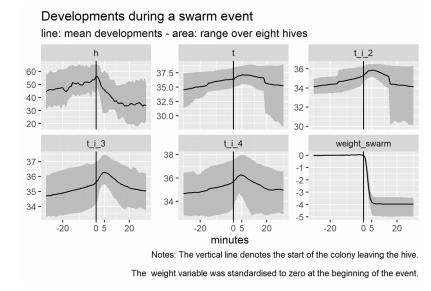
Analytical Use Case for Supervised Learning -Swarm Detection

When colonies swarm, the beekeeper has around one day to react. Otherwise the swarmed part of the colony may die or at least be lost to the beekeeper. Also the "old" part of the colony may be weakened.

Swarms can be characterised by typical developments!

©Thomas Söllner - stock.adobe.com

What happens during a swarm?



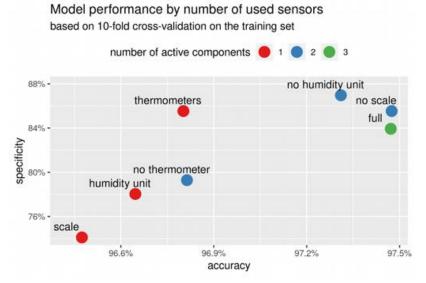
Developments in key variables during a swarm

How do we model?

Non-linear model based on key variables, their growth rates and lags, time of day.

- small sample with missing data -> dimension reduction to maximum thermometer value, but also multiple models on subsets of variables
- unbalanced sample (few observed swarms): up-sampling training set with SMOTE

Random Forest works quite well

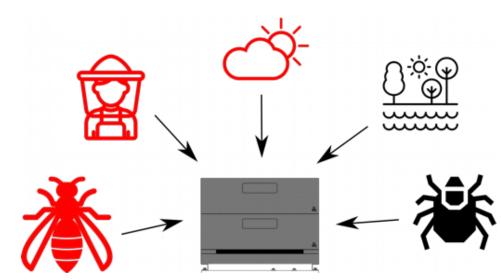


Performance metrics of RF models using subsets of sensor components

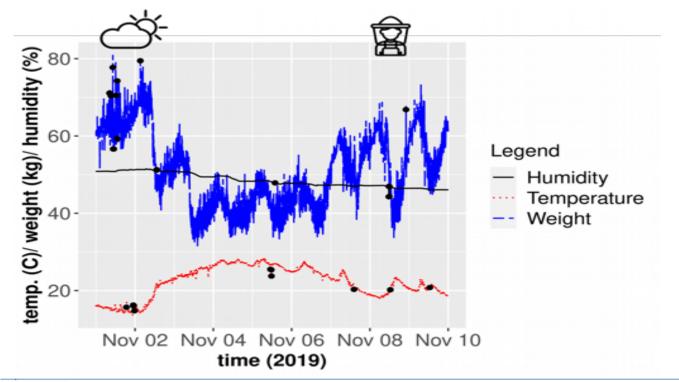
Local Outlier Detection

Data Modelling & Sensor Measurements Predictions

Difference between Prediction and the Actual Value



Local Outlier Detection



CORRELAID

RHEIN-MAIN

Introduction - Precision beekeeping

The colony is a complex super-organism

- complex organisation
- division of labour
- developments are hard to observe: inspections are stressful, in winter not possible at all

Precision beekeeping

- install **sensors within beehive** for continuous monitoring
- weight, temperature, humidity, gas concentration, video, audio
- first works using simple algorithmic rules
- later first steps using ML approaches
- most based on small samples

Introduction - The honey bee

The European Honeybee (*apis mellifera*)

- important for pollination
- producer of honey
- increasing number of colonies in DE
- but increasing cases of colony losses over the winter

©Guy Pracros / Adobe Stock

Outline

- Topical context Bees and beekeeping
- Bee Observer as a Citizen Science project
- The data
- ML use cases

